Solving the Laplace equation by meshless collocation using harmonic kernels
نویسنده
چکیده
We present a meshless technique which can be seen as an alternative to the Method of Fundamental Solutions (MFS). It calculates homogeneous solutions of the Laplacian (i.e. harmonic functions) for given boundary data by a direct collocation technique on the boundary using kernels which are harmonic in two variables. In contrast to the MFS, there is no artifical boundary needed, and there is a fairly general and complete error analysis using standard techniques from meshless methods for the recovery of functions. We present two explicit examples of harmonic kernels, a mathematical analysis providing error bounds and convergence rates, and some illustrating numerical examples.
منابع مشابه
Solving the 3D Laplace equation by meshless collocation via harmonic kernels
This paper solves the Laplace equation ∆u = 0 on domains Ω ⊂ R by meshless collocation on scattered points of the boundary ∂Ω. In contrast to the Method of Fundamental Solutions, there are no singularities and no artificial boundaries, since we use new singularity–free positive definite kernels which are harmonic in both arguments. In contrast to many other techniques, e.g. the Boundary Point M...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملDegenerate Parametric Integral Equations System for Laplace Equation and Its Effective Solving
In this paper we present application of degenerate kernels strategy to solve parametric integral equations system (PIES) for two-dimensional Laplace equation in order to improve its computing time. The main purpose of this paper is to obtain degenerate kernels for PIES based on non-degenerate kernels and to apply collocation method to solve modified PIES. We verify this method on two examples, ...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملApproximate solution of the fuzzy fractional Bagley-Torvik equation by the RBF collocation method
In this paper, we propose the spectral collocation method based on radial basis functions to solve the fractional Bagley-Torvik equation under uncertainty, in the fuzzy Caputo's H-differentiability sense with order ($1< nu < 2$). We define the fuzzy Caputo's H-differentiability sense with order $nu$ ($1< nu < 2$), and employ the collocation RBF method for upper and lower approximate solutions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 31 شماره
صفحات -
تاریخ انتشار 2009